Measuring Math that Matters: The PARCC and Smarter Balanced Approaches to Assessment

Today’s Webinar will begin shortly

There are TWO ways to hear the audio portion of this webinar:

- Streaming audio through your computer’s speakers
- Via Telephone: US/Canada: 1-877-668-4490
 Meeting ID: 662 560 315

Sponsored by:

Carnegie Learning

A recording of today’s webinar will be available at:

http://www.carnegielearning.com/webinars
http://www.mathedleadership.org/events/webinars.html
National Council of Supervisors of Mathematics

Measuring Math that Matters: The PARCC and Smarter Balanced Approaches to Assessment

www.mathedleadership.org
Presenters

Suzanne Mitchell, NCSM President

Carrie Piper-Senior Mathematics Advisor, Partnership for Readiness for College and Career (PARCC)

Shelbi Cole, Director of Mathematics, Smarter Balanced Assessment Consortium

A recording of today’s webinar will be available at:
NCSM Website
http://mathedleadership

Upcoming Event
45th NCSM Annual Conference
April 15-17, 2013
Denver, Colorado

My NCSM
Access Members-Only Resources
...Journals ...Position Papers
...Newsletters ...Podcasts
...and more

Latest News, including...
NCSM Illustrating the Standards for Mathematical Practice

Resources, including...
Mathematics Common Core Coalition
Inside Mathematics
CCSS Analysis Tools & PD Materials
NCSM Great Task Sample

Latest News
2012 Conference Keynote Address
"Mathematics Education for the 21st Century: Creating a Culture of Success for ALL." – Dr. Freeman A. Hrabowski, III.

CCSS
30 State Education Partnership

2012 Speaker Handouts
View presentations from select sessions of the Annual Conference in Philadelphia.

Math Reasoning Inventory (MRI)
The goal of MRI is to help teachers find out what their students really understand about mathematics. MRI assesses students' numerical

Quicklinks
Download selected NCSM materials presented at conferences and events
Contact Your Regional Director
Membership
View the PRIME Leadership Toolkit

Congratulations to the recipients of the Iris Carl Travel Grant!
Meet Them...

NCSM Calendar
• Conferences
• Seminars
• Academies
• Regional Events

View Them All Now...

The PRIME Leadership Framework
The ideal resource for innovative mathematics leaders

Take a Look Inside...

Year Round Learning:
NCSM and Other Professional Learning Opportunities

Start Learning Now...
NCSM Professional Development Opportunities

• NCSM Annual Conference
 – April 15-17, 2013, Denver, CO

• NCSM Summer Leadership Academy
 – July 23-25, 2013, Los Angeles, CA
 – July 29-31, 2013, Columbus, OH

• NCSM Fall One-Day Leadership Seminars
 – October 16, 2013, Baltimore, MD
 – October 23, 2013, Las Vegas, NV
 – November 6, 2013, Louisville, KY
Fuel your leadership engine

Be there for the green flag as Karen Cator's keynote address, Transforming American Education: Learning Powered by Technology opens the 43rd NCSM Annual Conference on April 11, 2011.

Karen Cator is the Director of the Office of Educational Technology at the U.S. Department of Education. She has devoted her career to creating the best possible learning environments for the current generation of students. Prior to joining the department, Cator directed Apple’s leadership and advocacy efforts in education. In this role, she focused on the intersection of education policy and research, emerging technologies, and the reality faced by teachers, students, and administrators.

Prior to joining Apple in 1997, Cator worked in the public education sector leading technology planning and implementation in Juneau, Alaska. She also served as Special Assistant for Telecommunications for the Lieutenant Governor of Alaska. Cator holds a master’s degree in school administration from the University of Oregon and a bachelor’s in early childhood education.

Our Position

The National Council of Supervisors of Mathematics believes that in order to help students learn challenging, standards-based mathematics, educators must establish a classroom climate that promotes positive self-beliefs about intelligence and academic ability. We believe that teacher actions can significantly affect students’ self-beliefs and that — in those student self-belief depths and strengths — teacher beliefs do so as well. Positive self-beliefs, as well as positive expectations in mathematics, increase student motivation and engagement.

Mathematics educators can best install positive student beliefs about their intelligence and ability to do mathematics when they:

- Understand that educators play a crucial role in student motivation.
- Know that equity requires that educators reflect on their individual beliefs about intelligence and whether or not they believe that all children can learn mathematics.
- Establish a learning environment that promotes a view of intelligence as malleable and fosters a sense of belonging for each student.
- Recognize and act upon the fact that even students who currently appear not to care, do want to learn and be challenged.
- Ensure that all students have the right to authentic and meaningful mathematics curricula taught in engaging and accessible ways.

Research that Supports Our Position

In its Principles and Standards for School Mathematics, the National Council of Teachers of Mathematics (2000) put forth an ambitious vision of school mathematics that requires that all students engage in meaningful mathematics. For students to want to engage in meaningful mathematics, however, it is critical that we not underemphasize what it takes to motivate them to succeed in school. The National Mathematics Advisory Panel (2001), for example, found that 62% of Algebra I teachers reported “working with unmotivated students” is “single most challenging aspect of teaching Algebra I.” In addition, former American Psychological Association president Robert Sternberg...
NCSM Position Papers

1. Effective and Collaborative Teams
2. Sustained Professional Learning
3. Equity
4. Students with Special Needs
5. Assessment
6. English Language Learners
7. Positive Self-Beliefs
8. Technology
9. Mathematically Promising Students
10. Mathematics for the Young

A recording of today’s webinar will be available at:
Today’s Goals

• Discuss PARCC Assessment Design and Model Content Framework
• Discuss an overview of PARCC Task Types and Evidence Statements
• Discuss the differences in formative, interim and summative assessment
• Discuss K-12 teacher and higher education involvement
• Review Smarter Balanced Sample Test Items

A recording of today’s webinar will be available at:
PARCC Mathematics Update

February 2013

Presenter:
Carrie Piper, Senior Advisor, Mathematics
Assessment Design
Mathematics, Grades 3-8 and High School End-of-Course

- **Diagnostic Assessment**
 - Early indicator of student knowledge and skills to inform instruction, supports, and PD
 - Non-summative

- **Mid-Year Assessment**
 - Performance-based
 - Emphasis on hard-to-measure standards
 - Potentially summative

- **Performance-Based Assessment (PBA)**
 - Extended tasks
 - Applications of concepts and skills
 - Required

- **End-of-Year Assessment**
 - Innovative, computer-based items
 - Required

- **2 Optional Assessments/Flexible Administration**
PARCC states developed Claims for Mathematics based on the CCSSM.

PARCC states developed the Model Content Frameworks to provide guidance to key elements of excellent instruction aligned with the Standards.

The blueprints for the PARCC Mathematics Assessments have been developed using the CCSS, Claims and Model Content Frameworks.

Cognitive Complexity Framework development in partnership with item development contractors.

Performance Level Descriptors are in the process of being drafted.

Phase 1 of items development is well on its way.
Claims Driving Design: Mathematics

Students are on-track or ready for college and careers

Sub-claim A: Students solve problems involving the major content for their grade level with connections to practices

Sub-Claim B: Students solve problems involving the additional and supporting content for their grade level with connections to practices

Sub-claim C: Students express mathematical reasoning by constructing mathematical arguments and critiques

Sub-Claim D: Students solve real world problems engaging particularly in the modeling practice

Sub-Claim E: Student demonstrate fluency in areas set forth in the Standards for Content in grades 3-6
Approach of the Model Content Frameworks for Mathematics

• PARCC Model Content Frameworks provide a deep analysis of the CCSS, leading to more guidance on how focus, coherence, content and practices all work together.

• They focus on framing the critical advances in the standards:
 – Focus and coherence
 – Content knowledge, conceptual understanding, and expertise
 – Content and mathematical practices

• Model Content Frameworks for grades 3-8, Algebra I, Geometry, Algebra II, Mathematics I, Mathematics II, Mathematics III
Model Content Frameworks
Grade 3 Example

Key: ■ Major Clusters; □ Supporting Clusters; ○ Additional Clusters

Operations and Algebraic Thinking
■ Represent and solve problems involving multiplication and division.
■ Understand properties of multiplication and the relationship between multiplication and division.
■ Multiply and divide within 100.
■ Solve problems involving the four operations, and identify and explain patterns in arithmetic.

Number and Operations in Base Ten
□ Use place value understanding and properties of operations to perform multi-digit arithmetic.

Number and Operations — Fractions
■ Develop understanding of fractions as numbers.

Measurement and Data
■ Solve problems involving measurement and estimation of intervals of time, liquid volumes and masses of objects.
□ Represent and interpret data.
■ Geometric measurement: understand concepts of area and relate area to multiplication and addition.
□ Geometric measurement: recognize perimeter as an attribute of plane figures and distinguish between linear and area measures.

Geometry
□ Reason with shapes and their attributes.
ECD is a deliberate and systematic approach to assessment development that will help to **establish the validity** of the assessments, **increase the comparability** of year-to-year results, and **increase efficiencies/reduce costs**.

How we have been presenting Evidence-Centered Design (ECD)

Claims

Design begins with the inferences (claims) we want to make about students.

Evidence

In order to support claims, we must gather evidence.

Task Models

Tasks are designed to elicit specific evidence from students in support of claims.
Claims Structure: Mathematics

Master Claim: On-Track for college and career readiness. The degree to which a student is college and career ready (or “on-track” to being ready) in mathematics. The student solves grade-level /course-level problems in mathematics as set forth in the Standards for Mathematical Content with connections to the Standards for Mathematical Practice.

Sub-Claim A: Major Content\(^1\) with Connections to Practices
The student solves problems involving the Major Content\(^1\) for her grade/course with connections to the Standards for Mathematical Practice.

Sub-Claim B: Additional & Supporting Content\(^2\) with Connections to Practices
The student solves problems involving the Additional and Supporting Content\(^2\) for her grade/course with connections to the Standards for Mathematical Practice.

Sub-Claim C: Highlighted Practices MP.3,6 with Connections to Content\(^3\) (expressing mathematical reasoning)
The student expresses grade/course-level appropriate mathematical reasoning by constructing viable arguments, critiquing the reasoning of others, and/or attending to precision when making mathematical statements.

Sub-Claim D: Highlighted Practice MP.4 with Connections to Content (modeling/application)
The student solves real-world problems with a degree of difficulty appropriate to the grade/course by applying knowledge and skills articulated in the standards for the current grade/course (or for more complex problems, knowledge and skills articulated in the standards for previous grades/courses), engaging particularly in the Modeling practice, and where helpful making sense of problems and persevering to solve them (MP. 1), reasoning abstractly and quantitatively (MP. 2), using appropriate tools strategically (MP.5), looking for and making use of structure (MP.7), and/or looking for and expressing regularity in repeated reasoning (MP.8).

Sub-Claim E: Fluency in applicable grades (3-6)
The student demonstrates fluency as set forth in the Standards for Mathematical Content in her grade.

\(^1\) For the purposes of the PARCC Mathematics assessments, the Major Content in a grade/course is determined by that grade level’s Major Clusters as identified in the PARCC Model Content Frameworks v.3.0 for Mathematics. Note that tasks on PARCC assessments providing evidence for this claim will sometimes require the student to apply the knowledge, skills, and understandings from across several Major Clusters.

\(^2\) The Additional and Supporting Content in a grade/course is determined by that grade level’s Additional and Supporting Clusters as identified in the PARCC Model Content Frameworks v.3.0 for Mathematics.

\(^3\) For 3 – 8, Sub-Claim C includes only Major Content. For High School, Sub-Claim C includes Major, Additional and Supporting Content.
The PARCC assessments for mathematics will involve three primary types of tasks: Type I, II, and III. Each task type is described on the basis of several factors, principally the purpose of the task in generating evidence for certain sub-claims.

Source: Appendix D of the PARCC Task Development ITN on page 17
Overview of PARCC Mathematics Task Types

<table>
<thead>
<tr>
<th>Task Type</th>
<th>Description of Task Type</th>
</tr>
</thead>
</table>
| **I. Tasks assessing concepts, skills and procedures** | • Balance of conceptual understanding, fluency, and application
• Can involve any or all mathematical practice standards
• Machine scorable including innovative, computer-based formats
• Will appear on the End of Year and Performance Based Assessment components
• Sub-claims A, B and E |
| **II. Tasks assessing expressing mathematical reasoning** | • Each task calls for written arguments / justifications, critique of reasoning, or precision in mathematical statements (MP.3, 6).
• Can involve other mathematical practice standards
• May include a mix of machine scored and hand scored responses
• Included on the Performance Based Assessment component
• Sub-claim C |
| **III. Tasks assessing modeling / applications** | • Each task calls for modeling/application in a real-world context or scenario (MP.4)
• Can involve other mathematical practice standards
• May include a mix of machine scored and hand scored responses
• Included on the Performance Based Assessment component
• Sub-claim D |

For more information see PARCC Task Development ITN Appendix D.
Design of PARCC Math Summative Assessment

• Performance Based Assessment (PBA)
 – Type I items (Machine-scorable)
 – Type II items (Mathematical Reasoning/Hand-Scored – scoring rubrics are drafted but PLD development will inform final rubrics)
 – Type III items (Mathematical Modeling/Hand-Scored and/or Machine-scored - scoring rubrics are drafted but PLD development will inform final rubrics)

• End-of-Year Assessment (EOY)
 – Type I items only (All Machine-scorable)
Several types of evidence statements are being used to describe what a task should be assessing, including:

- Those using **exact standards language**
- Those transparently **derived from exact standards** language, e.g., by splitting a content standard
- **Integrative evidence statements** that express plausible direct implications of the standards without going beyond the standards to create new requirements
- **Sub-claim C & D evidence statements**, which put MP.3, 4, 6 as primary with connections to content
Several types of evidence statements are being used to describe what a task should be assessing, including:

1. Those using **exact standards language**

<table>
<thead>
<tr>
<th>Key</th>
<th>Evidence Statement Text</th>
<th>Clarifications, limits, emphases, and other information intended to ensure appropriate variety in tasks</th>
<th>Relationship to Mathematical Practices</th>
</tr>
</thead>
</table>
| 8.EE.1| Know and apply the properties of integer exponents to generate equivalent numerical expressions. *For example, $3^2 \times 3^{-5} = 1/3^3 = 1/27$.* | i) Tasks do not have a context.
ii) Tasks center on the properties and equivalence, not on simplification. For example, a task might ask a student to classify expressions according to whether or not they are equivalent to a given expression. | MP.7 |
Several types of evidence statements are being used to describe what a task should be assessing, including:

2. Those transparently **derived from exact standards** language, e.g., by splitting a content standard

<table>
<thead>
<tr>
<th>Key</th>
<th>Evidence Statement Text</th>
<th>Clarifications, limits, emphases, and other information intended to ensure appropriate variety in tasks</th>
<th>Relationship to MP</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.F.5-1</td>
<td>Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear).</td>
<td>i) Pool should contain tasks with and without contexts.</td>
<td>MP.2, MP.5</td>
</tr>
<tr>
<td>8.F.5-2</td>
<td>Sketch a graph that exhibits the qualitative features of a function that has been described verbally.</td>
<td>i) Pool should contain tasks with and without contexts.</td>
<td>MP.2, MP.5, MP.7</td>
</tr>
</tbody>
</table>
Several types of evidence statements are being used to describe what a task should be assessing, including:

3. **Integrative evidence statements** that express plausible direct implications of the standards without going beyond the standards to create new requirements.

<table>
<thead>
<tr>
<th>Key</th>
<th>Evidence Statement Text</th>
<th>Clarifications, limits, emphases, and other information intended to ensure appropriate variety in tasks</th>
<th>Relationship to MP</th>
</tr>
</thead>
</table>
| 4.Int.1 | Solve one-step word problems involving adding or subtracting two four-digit numbers. | The given numbers are such as to require an efficient/standard algorithm (e.g., 7263 + 4875, 7263 – 4875, 7406 – 4637). The given numbers do not suggest any obvious *ad hoc* or mental strategy (as would be present for example in a case such as 16,999 + 3,501 or 7300 – 6301, for example).

i) Grade 4 expectations in CCSSM are limited to whole numbers less than or equal to 1,000,000; for purposes of assessment, both of the given numbers should be limited to 4 digits. | MP.1 |
Several types of evidence statements are being used to describe what a task should be assessing, including:

4. **Sub-claim C & Sub-claim D Evidence Statements**, which put MP.3, 4, 6 as primary with connections to content.

<table>
<thead>
<tr>
<th>Key</th>
<th>Evidence Statement Text</th>
<th>Clarifications, limits, emphases, and other information intended to ensure appropriate variety in tasks</th>
<th>Relationship to MP</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS.C.5.11</td>
<td>Given an equation or system of equations, reason about the number or nature of the solutions.</td>
<td>i) For example, students might be asked how many positive solutions there are to the equation $e^x = x+2$ or the equation $e^x = x+1$, explaining how they know. The student might use technology strategically to plot both sides of the equation without prompting.</td>
<td>MP.3</td>
</tr>
</tbody>
</table>
• Blooms?
• Webb’s DOK?
• CCSS demand a new type of cognitive complexity framework.
• PARCC partnered with the Item Development contractors to develop a new cognitive complexity framework.
• New framework is based on multiple dimensions.
 – Mathematical Content
 – Mathematical Practices
 – Stimulus Material
 – Response Mode
 – Processing Demand
What’s Next for PARCC Mathematics?

• Continue with Phase 1 of item development (50% of item bank)

• Conduct Research Studies on functionality and student interaction with items in Spring 2013

• Begin Phase 2 of item development

• Conduct Field Testing in Spring 2014
Resources

- Any publicly released assessment policies, item prototypes, Model Content Frameworks can be found at www.PARCConline.org

- Additional item prototypes can be found at http://www.ccsstoolbox.com/parcc/PARCCPrototype_main.html
A Smarter Balanced System for Improving Mathematics Teaching and Learning

Shelbi K. Cole
Director of Mathematics
Smarter Balanced Assessment Consortium

NCSM
February 26, 2013
Assessment Literacy is a Priority

Score 1

+260

Score 2

Remediation

Ph.D. Program
"The world is small now, and we're not just competing with students in our county or across the state. We are competing with the world," said Robert Kosicki, who graduated from a Georgia high school this year after transferring from Connecticut and having to repeat classes because the curriculum was so different. "This is a move away from the time when a student can be punished for the location of his home or the depth of his father's pockets."
A National Consortium of States

- 25 states representing 40% of K-12 students
- 21 governing, 4 advisory states
- Washington state is fiscal agent
- WestEd provides project management services
A Balanced Assessment System

ELA/Literacy and Mathematics, Grades 3-8 and High School

DIGITAL LIBRARY of formative tools, processes and exemplars; released items and tasks; model curriculum units; educator training; professional development tools and resources; scorer training modules; and teacher collaboration tools.

Scope, sequence, number and timing of interim assessments locally determined

Last 12 weeks of the year*

Re-take option available

Performance Tasks
- ELA/literacy
- Mathematics

Computer Adaptive Assessment
- ELA/literacy
- Mathematics

Optional Interim Assessment
Computer Adaptive Assessment and Performance Tasks

Summative Assessment for Accountability

*Time windows may be adjusted based on results from the research agenda and final implementation decisions.
Summative Assessment: Purpose, Benefits and Limitations

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Benefits</th>
<th>Limitations</th>
</tr>
</thead>
</table>
| • Accountability for K-12 at the state, district, school and classroom/teacher levels
• Accurate Information about individual students’ achievement, growth over time, and (in 11th grade) readiness for college in English and math. | • Far more sophisticated and comprehensive measure of student knowledge and skills than most existing K-12 accountability or placement exams.
• Linked to known, high-quality content standards (Common Core).
• Early warning for students not yet college ready. | • Summative exams are not diagnostic in nature.
• Will not measure readiness for advanced mathematics (Calculus) requiring 12th grade instruction. |
What is 18 divided by 3?
Summative Assessment: Two-pronged Approach

<table>
<thead>
<tr>
<th>Computer Adaptive Test</th>
<th>Performance Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Assesses the full range of Common Core in English language arts/literacy and mathematics for students in grades 3-8 and 11 (interim assessments can be used in grades 9 and 10)</td>
<td>• Extended projects demonstrate real-world writing and analytical skills</td>
</tr>
<tr>
<td>• Measures current student achievement and growth across time, showing progress toward college and career readiness</td>
<td>• May include online research, group projects, presentations</td>
</tr>
<tr>
<td>• Includes a variety of question types: selected response, short constructed response, extended construction response, technology enhanced</td>
<td>• Require 1 to 2 class periods to complete</td>
</tr>
<tr>
<td></td>
<td>• Included in both English language arts/literacy and mathematics assessments</td>
</tr>
<tr>
<td></td>
<td>• Applicable in all grades being assessed</td>
</tr>
<tr>
<td></td>
<td>• Evaluated by teachers using consistent scoring rubrics</td>
</tr>
</tbody>
</table>
How CAT Works (Binet’s Test)

<table>
<thead>
<tr>
<th>Mental Age</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.5</td>
<td>x</td>
</tr>
<tr>
<td>10</td>
<td>3-</td>
</tr>
<tr>
<td>9.5</td>
<td>2+</td>
</tr>
<tr>
<td>9</td>
<td>1+</td>
</tr>
<tr>
<td>8.5</td>
<td>6-</td>
</tr>
<tr>
<td>8</td>
<td>7+</td>
</tr>
<tr>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

Number of items administered = 26
Number Correct = 13
Proportion correct = .50
Using Computer Adaptive Technology for Summative and Interim Assessments

<table>
<thead>
<tr>
<th>Feature</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased precision</td>
<td>Provides accurate measurements of student growth over time</td>
</tr>
<tr>
<td>Tailored for Each Student</td>
<td>Item difficulty based on student responses</td>
</tr>
<tr>
<td>Increased Security</td>
<td>Larger item banks mean that not all students receive the same questions</td>
</tr>
<tr>
<td>Shorter Test Length</td>
<td>Fewer questions compared to fixed form tests</td>
</tr>
<tr>
<td>Faster Results</td>
<td>Turnaround time is significantly reduced</td>
</tr>
<tr>
<td>Mature Technology</td>
<td>GMAT, GRE, COMPASS (ACT), Measures of Academic Progress (MAP)</td>
</tr>
</tbody>
</table>

- **Mature Technology:**
 - GMAT, GRE, COMPASS (ACT), Measures of Academic Progress (MAP)
K-12 Teacher Involvement

- Support for implementation of the Common Core State Standards (2011-12)
- Write and review items/tasks for the pilot test (2012-13) and field test (2013-14)
- Development of teacher leader teams in each state (2012-14)
- Evaluate formative assessment practices and curriculum tools for inclusion in digital library (2013-14)
- Score portions of the interim and summative assessments (2014-15 and beyond)
Higher Education Collaboration

- Involved 175 public and 13 private systems/institutions of higher education in application
- Two higher education representatives on the Executive Committee
- Higher education lead in each state and higher education faculty participating in work groups
- Goal: The high school assessment qualifies students for entry-level, credit-bearing coursework in college or university
Timeline

Formative Processes, Tools, and Practices Development Begins

- Writing and Review of Pilot Items/Tasks (including Cognitive Labs and Small-Scale Trials)
- Field Testing of Summative and Interim Items/Tasks
- Content and Item Specifications Development
- Pilot Testing of Summative and Interim Items/Tasks Conducted
- Preliminary Achievement Standards (Summative) Proposed and Other Policy Definitions Adopted
- Operational Summative Assessment Administered

Procurement Plan Developed

Summative Master Work Plan Developed and Work Groups Launched

2009-2010

2010-2011

2011-2012

2012-2013

2013-2014

2014-2015

2015-2016
The Mathematics
What is Changing?
Claims for the Mathematics Summative Assessment

<table>
<thead>
<tr>
<th>Overall Claim for Grades 3-8</th>
<th>“Students can demonstrate progress toward college and career readiness in mathematics.”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Claim for Grade 11</td>
<td>“Students can demonstrate college and career readiness in mathematics.”</td>
</tr>
<tr>
<td>Claim #1 - Concepts & Procedures</td>
<td>“Students can explain and apply mathematical concepts and interpret and carry out mathematical procedures with precision and fluency.”</td>
</tr>
<tr>
<td>Claim #2 - Problem Solving</td>
<td>“Students can solve a range of complex well-posed problems in pure and applied mathematics, making productive use of knowledge and problem solving strategies.”</td>
</tr>
<tr>
<td>Claim #3 - Communicating Reasoning</td>
<td>“Students can clearly and precisely construct viable arguments to support their own reasoning and to critique the reasoning of others.”</td>
</tr>
<tr>
<td>Claim #4 - Modeling and Data Analysis</td>
<td>“Students can analyze complex, real-world scenarios and can construct and use mathematical models to interpret and solve problems.”</td>
</tr>
</tbody>
</table>
The CCSS Require Three Shifts in Mathematics

- **Focus** strongly where the standards focus
- **Coherence**: Think across grades and link to major topics within grades
- **Rigor**: In major topics, pursue conceptual understanding, procedural skill and fluency, and application with equal intensity
1.OA.7 Understand the meaning of the equal sign, and determine if equations involving addition and subtraction are true or false. *For example, which of the following equations are true and which are false?* 6 = 6, 7 = 8 – 1, 5 + 2 = 2 + 5, 4 + 1 = 5 + 2.
What it Looks Like in Grade 3

True or False:

3 x 8 = 20 + 4 T F

50 ÷ 10 = 5 x 1 T F

9 x 9 = 8 x 10 T F
True or False:

\[
\frac{1}{2} \times \frac{1}{3} = \frac{3}{6} \times \frac{1}{3}
\]

\[
\frac{2}{2} \times \frac{1}{3} = \frac{3}{6} \times \frac{1}{3}
\]
What it Looks Like in Grade 8

Tell how many solutions:

$3x + 17 = 3x + 12$
What it Looks Like in High School

\[X^4 - 5x^3 + x^2 + 2x + 1 = \]

Drag the correct expression to make a true equation.
\[x^3 + (x + 1)^2 + X^4 - 6x^3 \]
\[X^4 - 3x^3 + 2x^3 + x^2 + 2x + 1 \]
\[X^4 - 5x^3 + x + x + 2x + 1 \]
…
How Can Assessments Deliver on the Promise of Focus, Coherence and Rigor?

- **FOCUS:** Assessments focus where the standards focus.

 Major content represents the majority of points and problems on assessments.

- **COHERENCE:** Assessments honor the coherence in the standards.

 Balance of tasks assessing individual standards and related standards within the context of the grade and, as relevant, the progressions.

- **RIGOR:** Assessments reflect the rigor of the standards.

 Balance of tasks assessing conceptual understanding, procedural skill and fluency, and application of mathematics to solve problems.
Smarter Balanced Sample Items

http://sampleitems.smarterbalanced.org/itempreview/sbac/
Key Talking Points for Item 43083: The Contest

- This is a “line item” that shows how the content of grade 3 progresses up to grade 4, from multiplication and division within 100 to understanding the factors of a number and interpreting the remainder in a division problem.

Part C: How many four-eyed space creatures are needed to make a group with 24 total eyes? (grade 3)

Part D: Somebody told the five-eyed space creatures that they could not join the contest. Explain why five-eyed space creatures cannot make a group with 24 total eyes.
Key Talking Points for Item 43328: Fractions 2a

- This item is one of a set of four in the domain “Fractions” across grades 3-5.
- Although part of the focus of this item is on operations with fractions (either multiplication of a mixed number by whole number or addition with mixed numbers), the response format asks students to “understand” that the resulting number is between two whole numbers, which is a more global goal of the standards in this domain.
- Although the item has text with it, the set-up allows for students to easily understand what it is asking them to do, a nice feature for assessing mathematics of struggling readers and English Learners.

![Diagram of bags and weight ranges](image)
Key Talking Points for Item 42933: Calculator

• This item maps the 21st century onto the standards, acknowledging that students use apps, applets, and other tools – and determining whether these tools are functioning (or calculating) as intended is a critical skill

• This item type will be very useful in assessing students' ability to create explicit formulas based on input and resulting output (while giving the student some control over the input)
Key Talking Points for Item 42968: Water Tank

- This item allows some student choice in how much water is moved from Tank A to Tank B to derive the radius of Tank B.
- The set-up allows students to deduce what is being asked even if they struggle to read the item text.
- The item draws on the content of earlier grades, but calling for more sophisticated use of that mathematics.
Key Talking Points for Item 43057: Room Wall

- The animation shows how the relationship between slope and angle measure (using slope to determine congruence) is used in real life, a concept that would be difficult to portray with a static image.
- This item attempts to push the field forward in terms of response capture and scoring capabilities.
Find Out More

Smarter Balanced can be found online at:

SmarterBalanced.org
Measuring Math that Matters

Thank You!

NCSM

www.mathedleadership.org